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Non-local conductivity and the effective potential
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Abstract. We discuss the absorption of electromagnetic radiation in small conducting particles, in the case
where the electron motion is diffusive. We refine an earlier theory in which we calculated the absorption
coefficient using an effective potential describing the screened electric field. Our new theory incorporates
the effects of non-locality in the electrical conductivity, and shows how the two limiting behaviours of the
effective potential at high and low frequencies can be derived from a unified theory. Our results are in full
agreement with our earlier calculation.
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transport in condensed matter – 03.65.Sq Semiclassical theories and applications

The purpose of this letter is to present a refinement
of an earlier theory [1] concerning the absorption of elec-
tromagnetic radiation by small conducting particles: our
earlier paper gives a brief review of the topic, and a list
of references. Our theory was concerned with the case of
very small particles, in which the predominant process is
electric dipole absorption, and where the electron motion
is diffusive; we consider only frequencies small compared
to the plasma frequency.

Classically, the absorption mechanism is Ohmic heat-
ing, due to the currents which establish the polarization
charges on the surface of the particle. In a quantum me-
chanical theory, the absorption coefficient is determined
by the mean-squared matrix elements of an effective po-
tential φ(r): the gradient ∇φ is the internal electric field,
which is much smaller than the externally applied field
because of polarization charges on the surface of the par-
ticle [2]. The mean squared matrix element 〈|φnm|2〉 can
be estimated semiclassically using the relation

〈|φnm|
2〉 ∼

1

2πnV ~

∫ ∞
−∞

dt exp(iωt)〈φ(t)φ(0)〉E (1)

where V is the volume of the particle and n is the density
of states per unit volume: the average is over states with
En − Em ∼ ~ω, and with both En and Em close to E
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(this formula is fully explained in [3]). Our earlier paper
discussed whether the frequency scale ωc = D/a2 (where
D is the diffusion constant, and a the typical dimension
of the particle) plays a role in the frequency dependence
of the absorption coefficient. It might be anticipated that
this frequency scale would be important because it charac-
terizes the decay of correlations of the effective potential.
We argued that the effective potential is itself dependent
upon the frequency, and showed that our form for the
effective potential implied that ωc plays no role in de-
termining the absorption coefficient. A similar conclusion
was also reached by Sivan and Imry [4]: their argument is
compared with ours in [1].

Our expression for the effective potential was of the
form

φ(r, ω) = φstat(r) + iωφdyn(r) (2)

where φstat(r) is the Thomas-Fermi potential, which binds
the polarization charge which appears in response to a
static electric field, and iωφdyn is a potential driving the
currents which move the polarization charge into place.
Our earlier calculation could be criticized on two grounds.
Firstly, when calculating the “dynamic” potential
iωφdyn(r), we used the Drude conductivity σ0 = ne2D,
which is only strictly correct at frequencies ω � ωc: at
lower frequencies we should use a non-local conductivity.
Secondly, the effective potential (2) is an ad hoc combi-
nation of its high and low frequency limits. It would be
desirable to have a derivation of the effective potential
which works uniformly at all frequencies. In this letter we
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will present a refined version of the theory, which answers
both of these criticisms: it reaches exactly the same con-
clusion.

Our calculation uses a formula for the non-local con-
ductivity which was originally derived by Serota et al. us-
ing an argument which invokes diagrammatic theory and
supersymmetric methods [5]; a more direct derivation is
given in [6]. The current j(r, t) is given by

j(r, t) =

∫
dr′
∫ t

−∞
dt′ σ̃(r, r′; t− t′) E(r′, t′) (3)

where the components of the non-local conductivity tensor
are

σij(r, r
′; t) = σ0

[
δ(r− r′)δ(t)δij −D∂

2
rir′j

P (r, r′; t)
]
.

(4)

We will briefly discuss the definition of the absorption
coefficient, and its relation to the effective potential, be-
fore describing how we calculate the effective potential.
We define the absorption coefficient α(ω) as the rate of
absorption of energy in a single particle, divided by the
square of the amplitude of the externally applied electric
field, E0. Following [1], we use the Fermi golden rule and
Pauli exclusion principle (equivalently, the Kubo formula)
to calculate the rate of absorption: we have

α(ω) ≡
1

E2
0

〈
dE

dt

〉
=
π~n2V 2ω2

2E2
0

〈|φnm|
2〉En−Em∼~ω .

(5)

Given the effective potential φ(r), its correlation function
may be written

〈φ(t)φ(0)〉 =
1

V

∫
dr

∫
dr′ φ(r)φ(r′)P (r, r′; t) (6)

where the diffusion propagator P (r, r′, t) satisfies [∂t −
D∇2

r]P (r, r′; t) = δ(r − r′), with the Neumann boundary
condition ni∂riP = 0 (where ni are the components of the
normal to the boundary).

We now turn to the calculation of the effective po-
tential. The externally applied electric field induces a po-
larization charge, with charge density ρ(r). Following the
arguments of our earlier paper [1] (see also the discussions
in [7,8]), we will assume that, for frequencies small com-
pared to the plasma frequency, the charge density is iden-
tical to the classical charge density produced by a static
electric field. In three dimensional particles this is concen-
trated at the surface, in a layer of depth λs, the Thomas
Fermi screening length, but in two dimensions the screen-
ing charge has a continuous distribution, with a z−1/2 sin-
gularity, where z is the distance from the edge. Provided
the frequency of the radiation is small compared to the
plasma frequency, the polarization charge density may be
assumed to be that given by classical electrostatics, for a
constant and uniform externally applied field. For general
geometry, the calculation of ρ(r) is a difficult problem in
electrostatics, but we will assume that the static polariza-
tion charge density is known.

The effective potential determines the current flowing
through (4) and (5). We determine φ(r) by requiring that
the current generates the known charge density: combin-
ing the continuity relation iωρ = ∇ · j with (3, 4), we
find

ρ(r) = −e2

∫
dr′Π(r, r′;ω)φ(r′) (7)

where

Π(r, r′;ω) = n δ(r− r′)− iωnP (r, r′;ω) (8)

is a non-local polarizability.
From (7), we can see the limiting behaviours of φ(r)

at high and low frequencies. In the low frequency limit,
Π(r, r′;ω)'n δ(r−r′) and we see that φ(r)=(ne2)−1ρ(r).
This is exactly the Thomas Fermi potential φstat(r) which
appears in (2). In the high frequency limit, Π(r, r′;ω) ap-
proaches −(nD/iω)∇2 δ(r− r′). Hence, in this limit, φ(r)
satisfies Poisson’s equation in the form ∇2φ = (iω/σ0)ρ:
this (together with the boundary condition) defines the
dynamical potential φdyn(r) which dominates (2) at high
frequencies. Equations (7, 8) therefore provide a unified
model to determine the effective potential, which gives the
correct limiting behaviour at low and high frequencies.

In fact, we can also show that the effective potential
(2) which we proposed in our earlier paper is the exact so-
lution of (7). By partial integration and using the diffusion
equation for the propagator, we obtain

[D∇2 − iω] ρ(r) = −σ0∇
2φ(r) . (9)

Using the ansatz φ(r) = −(ne2)−1 ρ(r)+iωφ1(r) we obtain
φ1 ≡ φdyn: the frequency-dependent contribution to φ(r)
is therefore precisely the dynamic potential in (2).
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